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A New Class of Eigenfunction Expansion Methods
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Abstract—This paper presents a new class of algorithms for a
fast calculation of dispersion characteristics in inhomogeneously
loaded strictly bidirectional waveguides. The algorithms use the
method of moments to convert the wave equation to a matrix eigen-
value problem using, as a basis, a set of known solutions deter-
mined for a few selected points from the diagram. Depending
on the choice of points for the basis and the testing functions, sev-
eral algorithms are derived, each leading to extremely simple ex-
pressions for the calculation of the matrix elements.

Index Terms—Dispersion characteristics, method of moments,
numerical analysis, waveguides.

I. INTRODUCTION

F INDING dispersion characteristics of complex waveguides
using frequency-domain techniques such as finite-ele-

ment or finite-difference methods involves solving a complex
boundary value problem for a large number of frequency or
propagation constant points. Such an approach may be very
inefficient, as it implies that the numerical complexity is
identical at each point. Recognizing this fact, two techniques
that alleviate this problem have been proposed. In the first
one [1], [2], the problem is solved for modes at cutoff, which
are then used as a basis for the field expansion. Using the
method of moments, the wave equation is converted into a
matrix eigenproblem. The solution outside cutoff is found by
calculating the eigenvalues of a small dense matrix. In contrast
to generalized telegraphist’s equation approach [4] and the
eigenmode transformation technique [5], both methods use
expansion functions computed for inhomogeneous waveguides.
As a result, a very small number of expansion terms yields ac-
ceptable results, even for a high-contrast step index permittivity
profile.

Another approach [3] employs a technique called the asymp-
totic waveform evaluation (AWE), which uses the Taylor series
or Padé approximation to represent the dispersion characteris-
tics around a selected frequency point. The advantage of using
these algorithms lies in their ability to reduce the computational
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effort. The sophisticated and often time-consuming methods are
used only once—to construct the basis or to evaluate the expan-
sion coefficients required by AWE. Once this has been done, the
solution for the wide frequency range is quickly computed.

In this paper, we present several algorithms for fast calcula-
tion of dispersion characteristics and fields in inhomogeneously
loaded waveguides. The algorithms are similar to those pre-
sented in [1] and [2] in the sense that they also employ the
method of moments to convert the wave equation to a matrix
eigenvalue problem using, as a basis, a set of known solutions
of a loaded guide determined for a few selected points from the

diagram. However, unlike in the previous methods, the
choice is not limited to modes at cutoff, and the computation of
matrix elements is also significantly simpler. We show that, by
a careful choice of points for the basis and the testing functions,
several new algorithms are derived, each leading to extremely
simple expressions for the calculation of the matrix elements.

II. THEORY

In this paper, we shall concentrate on a class of lossless
and strictly bidirectional guides [6], which consists of struc-
tures uniform in the -direction, laterally bounded by perfect
electric or magnetic screens and inhomogeneously filled with
an anisotropic medium whose (absolute) permittivity and
permeability tensors are given by

(1)

The wave propagation in such a guide may be described by the
following equation [9]:

(2)

where is a unit vector in the -direction, is the transverse
electric field, and are the propagation constant and the an-
gular frequency, respectively. Premultiplying the above equa-
tion with , one gets

(3)
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Here, , the transverse electric flux density, is regarded as an
unknown.

Both problems can compactly be written in the following op-
erator form:

(4)

where stands for or represents differential part of the
operators and are operators that either involve the media
parameters (e.g., for or for ) or are simple unit oper-
ators.

The class of new algorithms discussed in this paper
is based on the assumption that the above problem has
been solved at discrete points so that we know triads

, which satisfy equation

(5)

within domains determined by the boundary conditions. It is
further assumed that the solutions of the transposed problem,
denoted by have been
found at these points. For noncomplex modes, these transposed
solutions for the problems defined by (2) and (3) are given by
[9], respectively, and

, where and is the magnetic field and flux density
calculated from the corresponding electric quantities satisfying
(5). If a mode is complex, the transposed solution is given by

or , with the asterisk in the
subscript position indicating that the field corresponding to
has to be substituted.

The set of known solutions forms the basis for the
method-of-moments solution of (4), while the solutions of
a transposed problem are used as testing functions. The
approximate solution of (4) for arbitrary and is given by a
truncated series

(6)

with .
Substituting the above decomposition into (4), one gets

(7)

Using (5), we can now replace the first terms under the sum-
mation sign with , when the equation to be
solved becomes

(8)

Taking the inner product of (8) with functions gives the
following set of equations:

(9)

where
and the elements of matrices and are given by

and , respectively, where
denotes an inner product. The calculation of matricesand
is extremely simple. For instance, taking , we have

and, hence, the elements of the matrices are
given by

(10)

(11)

where denotes the cross section of a guide. It is seen that the
new algorithm requires the calculation of integrals involving
only the components of electromagnetic momenta and
Poynting vectors describing stress–energy interactions between
modal fields used in the basis [6].

Equation (9) can easily be transformed to give a generalized
matrix eigenvalue equation with either or treated as an
eigenvalue. Treating (or ) as a varying parameter and solving
the matrix problem for [or ] and , one gets
the approximate dispersion characteristics and field distribution
for up to modes of a waveguide of interest.

The procedure described above is common for a whole family
of new techniques, which differ one from another by the crite-
rion adopted for the choice of the basis and the type of equation
[i.e., (2) or (3)] solved. Note that, thus far, nothing has indeed
been said about the choice of the points for calculating the basis,
i.e., and the corresponding can be arbitrary selected from
the points of dispersion diagram. For instance, one may choose
these points so that all of them belong to dispersion curve of a
mode, which is of our particular interest. In that case, all fields
used in series (6) would correspond to the fields of the same
mode calculated at different frequency points. Let us consider
other choices. Suppose all expansion functions are calculated
for the same . (One important case is when , i.e., when
the eigenfunctions corresponding to the modes at cutoff are used
in the expansion). This implies and (9) becomes

(12)

or

(13)

We have now obtained a standard matrix eigenvalue problem
with as an eigenvalue. The purpose of this trans-
formation becomes obvious when one notes that if ,
then . Accordingly, since and are orthogonal for
fixed ( in our algorithms denotes the solution to the
transposed problem), then , where
is the normalizing constant and is a Kronecker symbol. As
a result, taking as the unknown field and using fields com-
puted for as a basis, one reduces the problem to the solution
of

(14)
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where the elements of matrix are given by an extremely
simple formula with

(15)

The solution of (14) gives the characteristics in the form .
Alternatively, one may transform (12) so thatis an eigenvalue
and the problem to be solved is

(16)

with .
Another pair of algorithms is obtained if and the basis

is defined by . In other words, eigensolutions of (2)
evaluated for are used to represent the electric field. If
this is the case, then , which entails the diagonalization of
matrix and yields two algorithms given by the matrix eigen-
problems

(17)

(18)

with the elements of matrices and given by
and and defined as

(19)

Equations (9), (14), and (16)–(18) describe six algorithms
that differ one from another by the choice of basis functions and
the selection of an unknown and a parameter. For convenience,
all algorithms are summarized in Table I. The following conven-
tion is used to designate the algorithms. The first letter denotes
the type of dispersion characteristics generated by the algorithm,
while one or two letters after the dash indicate the quantity (for
Poynting vectors and for electromagnetic momenta) required
to evaluate the matrix’ elements. It has to be noted that yet an-
other set of algorithms can be obtained if or
are taken as testing functions. The algorithms resulting from this
choice will not be discussed in this paper.

At this point, we can discuss a few important aspects of new
algorithms. First of all, they all assume that the set of basis func-
tions is complete. As shown in [7], basis functions determined
from vector-wave equations (operator pencils) for and

form a complete set. If the basis is formed by solving
scalar TE or TM problems for or , one has to include
additional terms taken form the null space of the scalar operators
[6], [9]. If the basis functions are selected for arbitrary points
from the dispersion diagram (for algorithms- and - ),
the completeness cannot be inferred as easily. However, numer-
ical tests presented in the following section and in [10] indicate
that it is possible to obtain good results for a single dispersion
curve using as few as four expansion terms even if all expansion
points are computed for the same mode.

TABLE I
CLASSIFICATION OF ALGORITHMS

It has to be noted that the calculation of the elements of the
mode-interaction matrices is very simple for all algorithms de-
scribed above. The most general formula involves calculation
of the coupling between the electromagnetic field expressed by
momenta or Poynting vectors of basis modes. Moreover, by a
special choice of the basis and testing functions, the evaluation
of the matrices is further simplified by the application of orthog-
onality relations. In terms of the computational effort, the new
algorithms can be shown to be much more economical than most
of the standard ones. The approach presented in this paper has a
hybrid character. An arbitrary numerical or analytical technique
can be used to evaluate the basis. Since the basis is calculated
at a single frequency or propagation constant point (or at most
a few points, in the case of two general algorithms- and

- ), even a time-consuming method may be used to this end.
As a second step, a dense matrix eigenvalue problem is created
and solved in as many points as required. If the computational
effort for solving this dense problem is lower than the computa-
tion workload in a standard algorithm, the algorithms described
in this paper offer a speedup of

(20)

where is a number of computation points, is the time
required to compute the basis and set up the matrices,is
the time required by a dense matrix eigenvalue solver in a new
algorithms at one point, and is the time of one solution in a
standard approach. When , (20) tends to .
It is evident that the time savings may be significant, especially
when the number of points is large. It has to be noted that
similar savings in time can be expected in algorithms proposed
in [1]–[3] provided is large.

III. RESULTS

All algorithms presented in the preceding section have been
tested on several waveguiding structures [9]. In this paper, we
present the most representative results for the algorithms. In a
first test, we shall compare the results obtained by means of a
few new algorithms with reference calculations based on the fi-
nite-difference frequency-domain technique (FDFD). The dis-
persion curves and the corresponding modal fields of rectan-
gular guide loaded with a dielectric slab of relative permittivity
of nine were computed in the 0–20-GHz range with a grid of 40

20 points.
For this grid size, the FDFD method leads to a sparse matrix

eigenvalue problem with the matrix size of 1540. To compute
the solution with the frequency step of 50 MHz, the sparse solver
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Fig. 1. Dispersion characteristics for three modes with magnetic-wall
symmetry in a rectangular image guide calculated using the FDFD method.
Letters A–I indicate various points at which modal fields have been calculated
and used as a basis in algorithms described in this paper. The structure is shown
in the inset—dimensions are in millimeters

Fig. 2. Error in propagation constant for a dominant mode (relative to FDFD
computations shown in Fig. 1) in three fast� algorithms. The results for
algorithms�-G and�-S are plotted for theN = 10 (solid line) andN = 20

(dashed line) modes with the magnetic-wall symmetry used in series (6).

had to be applied times. Thus, the characteristics ob-
tained are shown in Fig. 1. (The modes are labeled according
to the scheme used in [6].) Subsequently, three new algorithms

- , - , - (cf. Table I) were used to evaluate the dis-
persion characteristic of the dominant mode. Each of the algo-
rithms uses a different set of eigenfunctions. Several points be-
longing to three sets, denoted by letters A–I, are shown in Fig. 1.
In particular, for algorithm - , which allows eigenfunctions
for an arbitrary set of pairs , four points corresponding to
the same mode, namely A, B, D, and E, were selected for the
basis. Algorithm - was implemented for the basis calculated
at . The first three such points are denoted by B, F, and G
in Fig. 1. Finally, for algorithm - , basis functions were cal-
culated at GHz. Again, the first three such points are
denoted by C, H, and I in Fig. 1. Once the bases have been eval-
uated with the FDFD solver, the new algorithms were used to
compute the dispersion characteristic at all 401 points used in

Fig. 3. Error in propagation constant for three modes (relative to FDFD
computations shown in Fig. 1) in algorithm�-S using the basis constructed
formN = 20 modes with the magnetic wall evaluated at� = 0.

Fig. 4. Magnetic field energy error for three modes (relative to FDFD
computations shown in Fig. 1) in algorithm�-S using the basis constructed
form n = 10 (solid line) andN = 20 (dashed line) modes with the magnetic
wall evaluated at� = 0.

the reference solution. The speedup for- and - algorithms
was and for - algorithm.

The relative error in propagation constant of the dominant
mode for the three algorithms is shown in Fig. 2. Algorithm

- used only four points in the basis. The results for algo-
rithms - are - , shown for the bases consisting of ten (solid
line) or 20 (dashed line) eigenfunctions. It is seen that all algo-
rithms are capable of reproducing the dispersion characteristic
with a very good accuracy. Since all points (A, B, D, E) used
in the basis correspond to the dominant mode algorithm,-
gives the best results. When higher order modes are of interest,
algorithm - should be used. Fig. 3 shows the relative error
in propagation constant, obtained with this algorithm and basis
size , for all modes shown in Fig. 1. Note that, two
modes become degenerate below cutoff and produce a pair of
complex waves, which exist over a finite frequency range. Algo-
rithm - predicts the propagation constant for this wave with
the accuracy better than 0.2%. (Only the real part is shown, but
the results for the imaginary part are similar). Fig. 4 shows the
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Fig. 5. Dispersion characteristics of modes in a circular waveguide
homogeneously loaded with an anisotropic magnetic medium. The structure is
shown in the inset—dimensions are in millimeters. The letters A–D denote the
first four points of the basis in!-S algorithm.

Fig. 6. Error in propagation constant for modes (relative to the solution shown
in Fig. 5) in algorithm!-S using the basis constructed formN = 20 modes
with m = 1 evaluated at� = 200 rad/m.

magnetic-field energy error for three modes evaluated with al-
gorithm - with (solid line) and (dashed
line). It is seen that fields of all modes are satisfactorily repro-
duced. The results for the electric field were even slightly better
and, therefore, these plots are not presented here.

In order to illustrate the ability of the new algorithms to deal
with anisotropic media, we also analyzed a circular waveguide
homogeneously loaded with a magnetic medium described by
the dielectric constant and permeability tensor given
by

(21)

Due to gyrotropic properties of the medium, the propagation
constants of hybrid modes and depend on the
sign of the index denoting the angular variation. In this paper,
we present the results for modes having the angular dependence

. These modes were first found by solving a nonlinear
dispersion equation [8] and the results, regarded as the reference
solutions, are shown in Fig. 5. Subsequently, algorithm- was
applied with the basis consisting of eigenfunctions
evaluated at rad/m. As algorithm - calculates char-
acteristics versus , Fig. 6 shows the relative error in compu-
tation of the frequency corresponding to a given. Four modes
are shown. It is seen that, except for two modes near cutoff, the
error is at the level of 0.01%. The largest value of the error for
the mode occurred at and was 0.25%. It has to be
mentioned that we also calculated, in a separate test, the errors
for the modes with . In this case, the results were even
better, as the relative errors for all four modes were lower than
0.05% for the entire region rad/m.

IV. CONCLUSIONS

In this paper, we have introduced a new class of algorithms,
which are intended for fast wide-band frequency-domain
analysis of waveguides. The new algorithms were based on the
method-of-moment solution of the wave equation. The basis
and testing functions used in the algorithms satisfy the wave
equation (or its transpose) for a few selected points. The careful
choice of these points allows one to significantly simplify the
calculation of inner products. Numerical tests showed that the
new algorithms provide an accurate solution, even for the small
number of functions used in the field expansion.
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