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A New Class of Eigenfunction Expansion Methods
for Fast Freguency-Domain Analysis
of Waveguides

Piotr Przybyszewski, Jacek Mielewski, and Michat Mrozowskéember, IEEE

Abstract—This paper presents a new class of algorithms for a effort. The sophisticated and often time-consuming methods are
fast calculation of dispersion characteristics in inhomogeneously ysed only once—to construct the basis or to evaluate the expan-
loaded strictly bidirectional waveguides. The algorithms use the sion coefficients required by AWE. Once this has been done, the

method of moments to convert the wave equation to a matrix eigen- lution for the wide f . ick] ted
value problem using, as a basis, a set of known solutions deter- SO'Ution for the wide irequency range Is quickly computed.

mined for a few selected points from theu— 3 diagram. Depending In this paper, we present several algorithms for fast calcula-
on the choice of points for the basis and the testing functions, sev- tion of dispersion characteristics and fields in inhomogeneously

eral algorithms are derived, each leading to extremely simple ex- |oaded waveguides. The algorithms are similar to those pre-
pressions for the calculation of the matrix elements. sented in [1] and [2] in the sense that they also employ the
Index Terms—Dispersion characteristics, method of moments, method of moments to convert the wave equation to a matrix

numerical analysis, waveguides. eigenvalue problem using, as a basis, a set of known solutions
of a loaded guide determined for a few selected points from the
I. INTRODUCTION w — 3 diagram. However, unlike in the previous methods, the

choice is not limited to modes at cutoff, and the computation of

F INDING dispersion characteristics of complex waveguidgatrix elements is also significantly simpler. We show that, by
using frequency-domain techniques such as finite-elgareful choice of points for the basis and the testing functions,
ment or finite-difference methods involves solving a complexeyeral new algorithms are derived, each leading to extremely

boundary value problem for a large number of frequency @mple expressions for the calculation of the matrix elements.
propagation constant points. Such an approach may be very

inefficient, as it implies that the numerical complexity is
identical at each point. Recognizing this fact, two techniques )
that alleviate this problem have been proposed. In the firstin this paper, we shall concentrate on a class of lossless
one [1], [2], the problem is solved for modes at cutoff, whicRnd strictly bidirectional guides [6], which consists of struc-
are then used as a basis for the field expansion. Using fHgeS uniform in the:-direction, laterally bounded by perfect
method of moments, the wave equation is converted into€¥Ctric or magnetic screens and inhomogeneously filled with
matrix eigenproblem. The solution outside cutoff is found b§n anisotropic medium whose (absolute) permittivity and
calculating the eigenvalues of a small dense matrix. In contr&§rmeability tensors are given by

to generalized telegraphist’'s equation approach [4] and the 0

eigenmode transformation technique [5], both methods use = [9 0 } - [ﬁt ] ] 1)

Il. THEORY

. . . . =
expansion functions computed for inhomogeneous waveguides. 0 e 0 pzs

As a result, a very small number of expansion terms yields ac- L i ,
ceptable results, even for a high-contrast step index permittivf[)l?e wave propagation in such a guide may be described by the

profile. following equation [9]:
Another approach [3] employs a technique called the asymp- 1
totic waveform evaluation (AWE), which uses the Taylor serigs* X #t Vi
or Padé approximation to represent the dispersion characteris- . .
tics around a selected frequency point. The advantage of using —wEX py-2X By —FPE, =0 (2)
these algorithms lies in their ability to reduce the computational N
wherez is a unit vector in the:-direction,E is the transverse
electric field, and3, w are the propagation constant and the an-
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Here, D,, the transverse electric flux density, is regarded as amereQ = diaglw?], Z° = diag[#?], a = [a1, az...an]"

unknown. and the elements of matricé€g and S are given byGy, =
Both problems can compactly be written in the following op¢Gu;, vi.) and Sy, = (Su;, vi«), respectively, wherd-, -)
erator form: denotes an inner product. The calculation of matriGesnd,S
is extremely simple. For instance, taking = Dy;, we have
Lu+ w?Gu — 3*Su =0 (4) w,. = # x Bu. and, hence, the elements of the matrices are
given by

whereu stands forﬁt orﬁt, L represents differential part of the
operators an®, G are operators that either involve the media
parameters (e.gS for D, or G for Et) or are simple unit oper-
ators.

The class of new algorithms discussed in this paper Ski = (Suy, v@:%/ﬁti xﬁt*“ dQd (12)
is based on the assumption that the above problem has 2

been solved atV discrete points so that we know triad
{w?, 32, wi(w;, Bi)}, i = 1--- N, which satisfy equation

Gri = (Gu;, v) = 2 / Dy x B}, dQ2 (10)
Q

SwhereQ2 denotes the cross section of a guide. It is seen that the
new algorithm requires the calculation of integrals involving
only the » components of electromagnetic momenta and
Lu; = —w?Gu; + 32Suy; (5) Poynting vectors describing stress—energy interactions between
modal fields used in the basis [6].
within domains determined by the boundary conditions. It is Equation (9) can easily be transformed to give a generalized
further assumed that the solutions of the transposed problamatrix eigenvalue equation with eithef or 32 treated as an
denoted by{w?, 82", vp.(wr, B5)}, k = 1,..., N have been eigenvalue. Treating (or 3) as a varying parameter and solving
found at these points. For noncomplex modes, these transpaedmatrix problem fo?(w) [or w?(3)] anda;(w, (), one gets
solutions for the problems defined by (2) and (3) are given likie approximate dispersion characteristics and field distribution
[9], respectivelypr, = v = 2 % Hy andwg, = v, = 2 x for up to N modes of a waveguide of interest.
Etk, whereﬁtk andﬁtk is the magnetic field and flux density The procedure described above is common for a whole family
calculated from the corresponding electric quantities satisfyilng new techniques, which differ one from another by the crite-
(5). If a mode is complex, the transposed solution is given bpn adopted for the choice of the basis and the type of equation
Uke = 2 X Hyw OF vpe = 2 X By, With the asterisk in the [i.e., (2) or (3)] solved. Note that, thus far, nothing has indeed
subscript position indicating that the field corresponding30  been said about the choice of the points for calculating the basis,
has to be substituted. i.e.,w; and the corresponding can be arbitrary selected from
The set of known solutions:; forms the basis for the the points of dispersion diagram. For instance, one may choose
method-of-moments solution of (4), while the solutions ahese points so that all of them belong to dispersion curve of a
a transposed problemy., are used as testing functions. Thenode, which is of our particular interest. In that case, all fields
approximate solution of (4) for arbitraty and/3 is given by a used in series (6) would correspond to the fields of the same
truncated series mode calculated at different frequency points. Let us consider
other choices. Suppose all expansion functions are calculated
al for the same5,. (One important case is whelg = 0, i.e., when
ww,f) = Z itk ®)  the eigenfunctions corresponding to the modes at cutoff are used
in the expansion). This implieg? = 321 and (9) becomes
with a; = a;(w, 3).
Substituting the above decomposition into (4), one gets GWI-2)a=S(B-RK)a (12)
or

. 1
WI-9) T @' Sa=———a. (13)

N
Z Lu7 + w?Gu, — /3QSu7¢] =0. @) ( = = -5

We have now obtained a standard matrix eigenvalue problem
Using (5), we can now replace the first terms under the surgith (3% — #2)~! as an eigenvalue. The purpose of thIS trans-
mation sign with—w?Gu; + 37Su;, when the equation to be formation becomes obvious when one notes thag it= D,
solved becomes thenG = I. Accordingly, sincew; andw;, are orthogonal for
fixed 8 = o (v« in our algorithms denotes the solution to the
transposed problem), the&®,; = (u;, vi.) = A;65;, WhereA;
i 2 32 i _ _ . o v
Z i [ (87 = %) Sui+ (0% — 7) G“Z} =0 O isthe normalizing constant arég is a Kronecker symbol. As
=1 a result, takingD; as the unknown field and using fields com-
Taking the inner product of (8) with functions,, gives the Puted forf, as a basis, one reduces the problem to the solution
following set of equations: of

N

1
(WVLI-2)a=5 (8 -2")a ©) do= g (14)

I
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where the elements of matrid are given by an extremely TABLE |
simple formulad,;, = (wQ _ w?)_lsv‘,k with CLASSIFICATION OF ALGORITHMS
. . Algorithm | Unknown Basis Eigenvalue | Eq
5 / By x @7, d0 BG5S | Pw) |Tmwnhl| P |0
Sip = 82 . (15) w-GS w(B) {us, wi, Bi} w? (9)
5. / Do x B, d2 A Blw) [ {wwn B} | (B — B | (14)
Q w-S w(B) [ {uiwi, o} w? (16)
. . . w-G w(B) {uj,wo, B} | (W? =)~ | (A7)
The solution of (14) gives the characteristics in the fgiw). G Ble) Tar. w0, il 7 (15)

Alternatively, one may transform (12) so thstis an eigenvalue
and the problem to be solved is

It has to be noted that the calculation of the elements of the
mode-interaction matrices is very simple for all algorithms de-
scribed above. The most general formula involves calculation
of the coupling between the electromagnetic field expressed by
momenta or Poynting vectors of basis modes. Moreover, by a
L §pecial choice of the basis and testing functions, the evaluation
evaluated forw = wq are used to represent the electric field. | ) . Co o

. ) . . o of the matrices is further simplified by the application of orthog-
this is the case, the® = I, which entails the diagonalization of ) . !

onality relations. In terms of the computational effort, the new

matrix G and yields two algorithms given by the matrix eigen- ) )
= y g g y 9 algorithms can be shown to be much more economical than most

Ba =w?a (16)

with B;;, = ([32 — /33)52k + wfézk
Another pair of algorithms is obtainedif= E; and the basis
is defined by{w,;, wo, G;}. In other words, eigensolutions of (2)

problems of the standard ones. The approach presented in this paper has a
Ca— 1 (17) hybrid character. An arbitrary numerical or analytical technique
=a=e w 4 can be used to evaluate the basis. Since the basis is calculated

at a single frequency or propagation constant point (or at most
Da . (18) g q y Or propag p (

a few points, in the case of two general algorithfhé&S and

with the elements of matrice and D given byCi, = (8% — w-GS), even atime-consuming method may be used to.this end.

B2) " gir and D = (w? — w?)gix + B26;x andg;x, defined as Asa seconq step, a dense_ matrix elgenvalue problem is cr_eated
‘ ¢ ¢ and solved in as many points as required. If the computational

effort for solving this dense problem is lower than the computa-

tion workload in a standard algorithm, the algorithms described

N>

- / Dy; x By, dQ
Q

ik = . / o x 7 d0 : 19 in this paper offer a speedup of
; S = _ Mtwa (20)
Equations (9), (14), and (16)—(18) describe six algorithms ot + Mty

that differ one from another by the choice of basis functions an . . . . .
) . whereM is a number of computation points,;, is the time
the selection of an unknown and a parameter. For convenience, . ; .
. . : . reguired to compute the basis and set up the matriggss
all algorithms are summarized in Table I. The following conven; ™. . e i
o . . ! he time required by a dense matrix eigenvalue solver in a new
tion is used to designate the algorithms. The first letter denotes . . . . S
algorithms at one point, ang, is the time of one solution in a

the type of dispersion characteristics generated by the algorith
while one or two letters after the dash indicate the quangitip( stdndard approach. Whefa > £, (20) tends ta ./ fsu.

Poynting vectors and for electromagnetic momenta) requiredt is evident that the time savings may be significant, especially

to evaluate the matrix’ elements. It has to be noted that yet a/}/lr_]en the number of pointd/ is large. It has to be noted that

other set of algorithms can be obtaineddf v, of S—Lugs _sumilar saving_s in time_: can be expected in algorithms proposed
are taken as testing functions. The algorithms resulting from tf']'ﬂs[l]_[?’] provided/ is large.
choice will not be discussed in this paper.

At this point, we can discuss a few important aspects of new
algorithms. First of all, they all assume that the set of basis func-All algorithms presented in the preceding section have been
tions is complete. As shown in [7], basis functions determingdsted on several waveguiding structures [9]. In this paper, we
from vector-wave equations (operator pencils) fgr# 0 and present the most representative results for the algorithms. In a
wp # 0 form a complete set. If the basis is formed by solvinfirst test, we shall compare the results obtained by means of a
scalar TE or TM problems fgBy = 0 or wg, one has to include few new algorithms with reference calculations based on the fi-
additional terms taken form the null space of the scalar operataite-difference frequency-domain technique (FDFD). The dis-
[6], [9]. If the basis functions are selected for arbitrary pointgersion curves and the corresponding modal fields of rectan-
from the dispersion diagram (for algorithmis(GS andw-GS),  gular guide loaded with a dielectric slab of relative permittivity
the completeness cannot be inferred as easily. However, nuntémine were computed in the 0-20-GHz range with a grid of 40
ical tests presented in the following section and in [10] indicate 20 points.
that it is possible to obtain good results for a single dispersionFor this grid size, the FDFD method leads to a sparse matrix
curve using as few as four expansion terms even if all expansieigenvalue problem with the matrix size of 1540. To compute
points are computed for the same mode. the solution with the frequency step of 50 MHz, the sparse solver

Ill. RESULTS
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Fig. 1. Dispersion characteristics for three modes with magnetic—w%l
symmetry in a rectangular image guide calculated using the FDFD meth
Letters A-l indicate various points at which modal fields have been calculate

L
8 10

L
12 14 16 18

Frequency [GHz]

20

0.5

041

0.3

Q
N
T

01

X

* HE10
© EHN1
X HE11

and used as a basis in algorithms described in this paper. The structure is shown

in the inset—dimensions are in millimeters

0.4r

0.3

0.2

01

2
=
e
[
@
o
=
k]
]
o

!
1

*  Algorithm S
X Algorithm G .
o Algorithm GS

8
Frequency [GHz]

10

12

20

Energy error [dB]
&
=]

* HE10
o  EH11
X HEM1
— 10 modes

561

mputations shown in Fig. 1) in algorithpr.S using the basis constructed

Fjg. 3. Error in propagation constant for three modes (relative to FDFD
(é!m N = 20 modes with the magnetic wall evaluatediat= 0.
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Fig. 4. Magnetic field energy error for three modes (relative to FDFD
computations shown in Fig. 1) in algorithpgr.S using the basis constructed
formn = 10 (solid line) andN = 20 (dashed line) modes with the magnetic
Fig. 2. Error in propagation constant for a dominant mode (relative to FDRDall evaluated ati, = 0.

computations shown in Fig. 1) in three fastalgorithms. The results for
algorithmsg3-G and3-S are plotted for theV = 10 (solid line) andN = 20
(dashed line) modes with the magnetic-wall symmetry used in series (6).

Frequency [GHz]

the reference solution. The speedupdef and3-G algorithms
wassS = 401 andS ~ 100 for 5-GS algorithm.

had to be applied/ = 401 times. Thus, the characteristics ob- The relative error in propagation constant of the dominant
tained are shown in Fig. 1. (The modes are labeled accordimpde for the three algorithms is shown in Fig. 2. Algorithm
to the scheme used in [6].) Subsequently, three new algorithm&7S used only four points in the basis. The results for algo-
5-GS, -5, p-G (cf. Table I) were used to evaluate the disrithms/-S ares-G, shown for the bases consisting of ten (solid
persion characteristic of the dominant mode. Each of the aldme) or 20 (dashed line) eigenfunctions. It is seen that all algo-
rithms uses a different set of eigenfunctions. Several points bthms are capable of reproducing the dispersion characteristic
longing to three sets, denoted by letters A—I, are shown in Fig.Mith a very good accuracy. Since all points (A, B, D, E) used
In particular, for algorithm3-G.S, which allows eigenfunctions in the basis correspond to the dominant mode algoritbv@&,S

for an arbitrary set of pairs;, /3;, four points corresponding to gives the best results. When higher order modes are of interest,
the same mode, namely A, B, D, and E, were selected for thlgorithm -5 should be used. Fig. 3 shows the relative error
basis. Algorithm3-S was implemented for the basis calculateth propagation constant, obtained with this algorithm and basis
atfd, = 0. The first three such points are denoted by B, F, and§ize N = 20, for all modes shown in Fig. 1. Note that, two

in Fig. 1. Finally, for algorithm3-G, basis functions were cal- modes become degenerate below cutoff and produce a pair of
culated atf = 10 GHz. Again, the first three such points arecomplex waves, which exist over a finite frequency range. Algo-
denoted by C, H, and | in Fig. 1. Once the bases have been evithm 3-S5 predicts the propagation constant for this wave with
uated with the FDFD solver, the new algorithms were used tioe accuracy better than 0.2%. (Only the real part is shown, but
compute the dispersion characteristic at all 401 points usedtlire results for the imaginary part are similar). Fig. 4 shows the
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Due to gyrotropic properties of the medium, the propagation
constants of hybrid modesH,,,, and H E,,,,, depend on the
sign of the indexn denoting the angular variation. In this paper,
we present the results for modes having the angular dependence
m = 1. These modes were first found by solving a nonlinear
dispersion equation [8] and the results, regarded as the reference
solutions, are shown in Fig. 5. Subsequently, algorithi$i was
applied with the basis consisting & = 20 eigenfunctions
evaluated aB = 200 rad/m. As algorithmw-S calculates char-
acteristicsv versus3, Fig. 6 shows the relative error in compu-
tation of the frequency corresponding to a giveriFour modes
are shown. It is seen that, except for two modes near cutoff, the
error is at the level of 0.01%. The largest value of the error for
the H F’;; mode occurred a8 = 0 and was 0.25%. It has to be
mentioned that we also calculated, in a separate test, the errors
for the modes withn = —1. In this case, the results were even
better, as the relative errors for all four modes were lower than
0.05% for the entire regiof < 3 < 400 rad/m.

Fig. 5. Dispersion characteristics of modes in a circular waveguide
homogeneously loaded with an anisotropic magnetic medium. The structure is

shown in the inset—dimensions are in millimeters. The letters A-D denote the

first four points of the basis iw-S algorithm.
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IV. CONCLUSIONS

In this paper, we have introduced a new class of algorithms,
which are intended for fast wide-band frequency-domain
analysis of waveguides. The new algorithms were based on the
method-of-moment solution of the wave equation. The basis
and testing functions used in the algorithms satisfy the wave
equation (or its transpose) for a few selected points. The careful
choice of these points allows one to significantly simplify the
calculation of inner products. Numerical tests showed that the
new algorithms provide an accurate solution, even for the small
number of functions used in the field expansion.
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